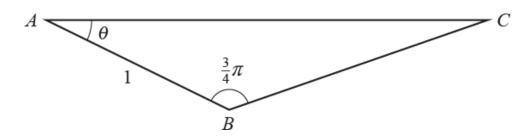
1. For a small angle θ , where θ is in radians, show that $1+\cos\theta-3\cos^2\theta\approx-1+\frac{5}{2}\theta^2$.

[4]

[4]

2.



The diagram shows triangle *ABC*, in which angle $A = \theta$ radians, angle $B = \frac{3}{4}\pi$ radians and AB = 1 unit.

(a) Use the sine rule to show that
$$AC = \frac{1}{\cos \theta - \sin \theta}$$
. [3]

(b) Given that θ is a small angle, use the result in part (a) to show that

$$AC \approx 1 + p\theta + q\theta^2$$
,

where p and q are constants to be determined.

Use small angle approximations to estimate the solution of the equation $\frac{\cos\frac{1}{2}\theta}{1+\sin\theta}=0.825$, if θ is small enough to neglect terms in θ or above. [4]

END OF QUESTION paper

Mark scheme

Question		on	Answer/Indicative content	Marks	Guidance	
			When θ is small $1 + \cos\theta - 3\cos^2\theta$ $\approx 1 + \left(1 - \frac{1}{2}\theta^2\right) - 3\left(1 - \frac{1}{2}\theta^2\right)^2$	M1(AO 1.1a)	Attempt to use \cos $\approx 1 - \frac{1}{2}\theta^2$ or $= 1 + \left(1 - \frac{1}{2}\theta^2 +\right)$ $-3\left(1 - \frac{1}{2}\theta^2 +\right)^2$	OR M1 Attempt to use $\cos\theta \approx 1 - \frac{1}{2}\theta^2$
			$1 \cdot (1 \cdot 1 \cdot 0^2) \cdot 2(1 \cdot 0^2 \cdot 1 \cdot 0^4)$	M1(AO1.1)	$-3\left(1-\frac{1}{2}\theta^2+\right)^2$ Multiply out	M1 use trigonometric identity $1 + \cos\theta - 3\cos^2\theta$
1			$=1+\left(1-\frac{1}{2}\theta^{2}\right)-3\left(1-\theta^{2}+\frac{1}{4}\theta^{4}\right)$ $=1+1-\frac{1}{2}\theta^{2}-3+3\theta^{2}-\frac{3}{4}\theta^{4}$	E1(AO2.5)		$= 1 + \cos\theta - 3\cos^2\theta$ $= 1 + \cos\theta - \frac{3}{2} - \frac{3}{2}\cos 2\theta$ E1 For showing clearly
			Since $ heta$ is small, we can neglect the higher order terms	E1(AO2.1)	For explanation of loss of Θ ^t term and consistent use of notation throughout (Working need not be fully correct) AG Clearly obtained www	which identity has been used and consistent use of notation throughout E1 AG Clearly obtained www Condone inconsistent
			so 1+ $\cos\theta$ – $3\cos^2\theta \approx -1 + \frac{5}{2}\theta^2$ as required	[4]	Condone θ^4 term missing without explanation and inconsistent notation	notation
			Total	4		
2		а	$\frac{AC}{\sin\frac{3}{4}\pi} = \frac{1}{\sin\left(\pi - \frac{3}{4}\pi - \theta\right)}$	M1(AO2.1)	Attempt sine rule	

	$AC = \frac{\sin\frac{3}{4}\pi}{\sin\frac{1}{4}\pi\cos\theta - \cos\frac{1}{4}\pi\sin\theta}$ $\sin\frac{3}{4}\pi = \sin\frac{1}{4}\pi = \cos\frac{1}{4}\pi \text{ so } AC = \frac{1}{\cos\theta - \sin\theta}$	M1(AO2.1) E1(AO2.2a)	For expanding $\sin\left(\frac{1}{4}\pi-\theta\right)$
		[3]	AG, so must show sufficient working; e.g. stating $\sin\frac{3}{4}\pi = \sin\frac{1}{4}\pi = \cos\frac{1}{4}\pi$ or using $\sqrt{2}$ oe for each
b	$AC = \left(1 + \left(-\theta - \frac{1}{2}\theta^{2}\right)\right)^{-1}$ $AC = 1 + \left(-1\right)\left(-\theta - \frac{1}{2}\theta^{2}\right) + \frac{(-1)(-2)}{2}\left(-\theta - \frac{1}{2}\theta^{2}\right)^{2} + \dots$	B1(AO1.1) M1(AO3.1a)	Using both small angle approximations Attempt binomial expansion of <i>AC</i> , with at least the first two terms present
	$AC \approx 1 + \theta + \frac{3}{2}\theta^2$	A1(AO1.1) A1(AO1.1) [4]	$p = 1$ $q = \frac{3}{2}$
	Total	7	

3	$\frac{1 - \frac{1}{8}\theta^2}{1 + \theta} = 0.825$ $0.125\theta + 0.825\theta - 0.175 = 0$ $\theta = 0.206 \text{ or } -6.81 \text{ (3 sf)}$ Discard -6.81 as not small. $\theta = 0.206 \text{ (3 sf)}$	M1 (AO1.1a) A1 (AO1.1) A1 (AO1.1) A1 (AO2.3) [4]	BC Statement needed and θ = 0.206 alone	Small Angle Approximations
	Total	4		